Atomistic Simulations of Ferrite and α -Fe

Ángel Alberto Izquierdo Sánchez, Alasdair Charles, Adrian Oila School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Introduction

- ► Motivation: Most MD simulations involving ferrite (the solid solution of carbon in BCC iron) reported in the literature are carried out on pure iron.
- ► Probable reasons: Influence of C in ferrite is neglected maybe due to its low carbon content (0.008 % in weight).

(a) α -Fe

- Carbon atoms strengthen the Fe lattice by creating strain fields and restricting dislocation movement.
- This work: Tensile test simulations of ferrite and α -Fe were carried out on the [111] direction at 300, 500 and 700 K.
- ▶ Fast strain rates: Strain rates applied were high $(10^7 10^{10} s^{-1})$ due to MD time scale limitations.
- The aim is to compare the tensile properties of ferrite and α -Fe at different strain rates and to estimate the influence of carbon atoms on the mechanical behaviour of ferrite.

Building Geometry

Fig. 1: Ferrite unit cell, Space group Im-3m. Carbon atoms (red) occupy octahedral sites in ferrite (Wyckoff position 6b [2]).

Simulation Set Up		
Parameter	Set Up	
Number of	$2.3 imes10^{6}$	
atoms		
Dimensions	$300 \times 300 \times 300 \text{ Å}^3$	
Interatomic	Hepburn and Ackland [1]	
potential		
Integration	1 fs	
timestep		
Boundary	ррр	
conditions		

Table 1: Parameters used in the simulations. p: periodic boundary conditions.

Fig. 2: Temperature versus time and ensembles used during equilibration.

Tensile Test Simulations

(c) α -Fe and Ferrite at $\dot{\varepsilon} = 10^8 \, \text{s}^{-1}$

Fig. 3: Stress-strain curves showing that the difference in mechanical behaviour between α -Fe and ferrite become more significant at lower strain rates and higher temperatures.

(b) Ferrite

Fig. 4: Deformation process of Ferrite at 700 K. (a) Dislocation nucleation. (b) Dislocation propagation and activation of secondary slip planes.

Fig. 5: Typical stress map after yield. Regions of higher stress are located along slip planes and dislocation junctions. The stress field acting on C atoms can also be visualised.

plastically dominated region.

Conclusions

- An important difference between the mechanical behavior of pure iron and ferrite indicates that using only Fe atoms to represent ferrite will result in errors.
- The strain rate sensitivity of the yield strength is described by $\sigma_y = C \dot{\varepsilon}^m$, with higher *m* values for α -Fe than for ferrite.
- The value D_C during yield was calculated as $3.6 \times 10^{-3} \,\mathrm{cm}^2/\mathrm{s}$.

References	Acknowledgements
[1] Hepburn, D. J. and Ackland, G. J Phys. Rev. B. 2008, 78, 165115	This research was funded by the Science and Technology Council of Mexico.
[2] Bhadeshia, H. K. D. H. Journal of Materials Science. 2004, 39, 3949–3955	► This research made use of the Topsy High Performance Computing service at Newcastle University.

A.Izquierdo2@newcastle.ac.uk